
Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 1 Chapter 1 - Understanding Excel VBA

CHAPTER 1 UNDERSTANDING EXCEL VBA

Visual Basic, or VB for short, is a programming language that was
developed many years ago by Microsoft to help people program their
computers. Microsoft Office has a number of applications that each
have a derivative version of VB which has become known as Visual
Basic for Applications, or VBA for short.

VBA is an object-oriented programming language that performs
operations by manipulating objects, which in turn have methods,
properties and events. Each application in the Microsoft Office
suite, including Microsoft Excel, has its own specific set of objects.

In this session you will:

 gain an understanding of programming in Microsoft
Excel

 gain an understanding of VBA terminology

 learn how to display the DEVELOPER tab

 gain an understanding of the VBA Editor screen and its
features

 learn how to open, close and switch to the VBA Editor

 gain an understanding of objects used in VBA

 learn how to access the Excel object model

 learn how to use the Immediate Window

 learn how to work with object collections

 learn how to work with property values

 learn how to work with worksheets in VBA

 learn how to use the Object Browser

 learn how to program with the Object Browser

 gain an understanding of how to access good and
reliable help for VBA

 gain an understanding of the codes used in this chapter.

INFOCUS

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 2 Chapter 1 - Understanding Excel VBA

PROGRAMMING IN MICROSOFT EXCEL

Microsoft Excel has had some form of
programming language available to it ever since
it was first released. Its current programming
language, VBA, is a very powerful and versatile

tool. It is not overly difficult to learn and use, but it
sometimes can seem complicated until you really
fully grasp its background and what it is primarily
designed to do.

The Difference Between Macros And VBA

There is really no difference between macros and VBA. When spreadsheets were introduced to
computing it was possible to program them to perform repetitive procedures. These programs were
simply lists of commands from the standard menu that you wanted to run in a particular sequence.
This early form of a program was known as a macro.

The term macro is still used today – indeed you’ll see it on the DEVELOPER tab of the ribbon in
Microsoft Excel 2013. However, these macros are now based on a full-blown programming language
(VBA) rather than a list of simple commands. So the two terms, macro and VBA, are
interchangeable.

Why Use VBA?

The sole justification behind putting a programming language behind an application like Microsoft
Excel is to extend its capabilities beyond those that you can find on the ribbon. There are several
reasons people decide to program in VBA:

 Repetition – The primary use of VBA is to automate operations (especially those performed in a
repetitive manner). For example, if you need to download accounting data, extract the sales
information and create a chart on a weekly basis, you can write code in VBA to automate these
tasks and ensure they are done quickly and accurately.

 Limitation and Interaction – Imagine developing the world’s best workbook full of facts and
formulas that plots the economies of several dozen developing nations around the world. Then
imagine handing that workbook to one of your colleagues only to find they have accidentally
deleted the area that contained your formulas! With carefully written VBA coding you can guide
inexperienced users through your workbook, giving them access to specific areas and
precluding them from others, providing them with specialised dialog boxes (known in VBA as
forms) and prompting them for key information.

 Cross-application Communication – You can use VBA to write programs that communicate
across applications. For example, using VBA you can pull Word data and charts into a
PowerPoint presentation, or insert sales figures from Excel into a Word document.

Time versus Effort

VBA isn’t always the best way to go about a task. If you only need to perform an operation (even a
complex one) once, then it would be a waste of time to write a program to do it – no matter how
clever the program makes you look!

Also, there are many actions that can quickly and easily be performed using a command or
commands that already exist on the ribbon. Before you sit down to write a VBA program, check to
make sure that the task can’t already be done in other ways. This is why it is important to have a
good grasp of Microsoft Excel before you attempt VBA.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 3 Chapter 1 - Understanding Excel VBA

VBA TERMINOLOGY

Visual Basic for Applications is a derivative of
the programming language Visual Basic. Each
Office application has its own particular kind of
VBA depending on the objects and operation of

the application. For example, Microsoft Excel uses
worksheets while Microsoft Word works with
documents. The following notes explain some of
the key concepts in VBA programming.

Object Oriented and Procedure Driven

Visual Basic for Applications and Visual Basic are both object-oriented programming languages
because they work with objects. Most of these objects appear on the screen, hence the term ‘visual’.

They are also procedure-driven languages using commands and structures from the BASIC
programming language to bind object statements into workable applications.

Objects, Properties, Methods and Events

In VBA an object is anything in an application that you can see and manipulate in some way.

For example, you can manipulate a worksheet by adding rows, deleting columns, displaying gridlines,
and so on. A worksheet is therefore an example of an object. Rows are also objects, as are columns
too. These are child objects of the parent object – the worksheet. This way of organising objects into
a hierarchy is known as an object model.

Objects can be manipulated in one of three ways. You can:

 change the way an object looks or behaves by changing its properties

 make an object perform a task by using a method that is associated with the object

 run a procedure whenever a particular event happens to an object.

Objects therefore have properties, methods and events.

A real-world
example…

Let’s look at a simple real-world analogy to get a better idea about objects,
properties, methods and events. Consider a car: it is an object because you can
see it and manipulate it. Its:

 properties are its physical characteristics such as its make, model,
colour, and so on

 methods define what you can do with the car such as reversing,
accelerating, turning, stopping, and so on

 events are the actions that happen to the car that generate an
automatic response from the car. For example, if you remove the keys
from the ignition while the car’s headlights are on (event), most cars will
sound a warning alarm or turn off the lights (response).

The Active Object

In VBA, active describes the object item that you’re currently working on.

For example, the worksheet cell that you’re editing or formatting in Excel is the active cell. The
workbook that you are currently working on is said to be the active workbook. The object that is
currently active is said to have the focus.

This is an important concept to understand because most of your VBA programming will be performing
an action on a particular object. If you don’t identify that object correctly, you may find that Excel shifts
focus behind the scenes to a different object and your program will fail.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 4 Chapter 1 - Understanding Excel VBA

DISPLAYING THE DEVELOPER TAB

Try This Yourself:

Before starting this
exercise ensure Excel
has started and a new,
blank workbook is
displayed…


Click on the FILE tab
to display the
Backstage


Click on Options to
display the Excel
Options dialog box


Click on Customise
Ribbon in the left
pane to display the
options for
customising the ribbon


In the right pane, click
on Developer so it
appears ticked


Click on [OK] to save
the settings and return
to Excel

The DEVELOPER tab
is now displayed on
the ribbon…


Click on the
DEVELOPER tab to
see the available
commands

For Your Reference…

To display the DEVELOPER tab on the ribbon:

1. Click on the FILE tab

2. Click on Options

3. Click on Customise Ribbon

4. Click on Developer in the right pane so it

appears ticked, then click on [OK]

Handy to Know…

 Once the DEVELOPER tab is displayed, it
will remain on the ribbon until you choose to
remove it again. You can do this by
displaying the Customise Ribbon screen of
the Excel Options dialog box and clicking on

Developer so it appears unticked.

Before you start working with VBA, you will need
to ensure that the DEVELOPER tab is displayed
on the ribbon in Excel. This tab allows you to
access the commands to display the VBA Editor

and run macros, among others. The DEVELOPER
tab is not displayed by default; you must enable it
using the Excel Options dialog box.

4

6 Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 5 Chapter 1 - Understanding Excel VBA

THE VBA EDITOR SCREEN

The VBA Editor is a separate application
designed to help you create and edit VBA
procedures. The VBA Editor comprises four
main components: the Project Explorer, the

Properties Window, the work area in which you
create VBA code in code modules and build
UserForms, and an area for special panes that
can be displayed.

Project
Explorer
toolbar

1


Project
Explorer

The Project Explorer displays the contents of the current VBA project which,
in the example above, is called VBAProject. (In general terms, a project is
an Office file and all of its associated VBA items, including its macros and
user forms). Contents of a project can include forms, objects such as
worksheets, and modules.

Using the tools in the Project Explorer’s toolbar you can display the code
window (View Code) so you can write and edit code associated with the
selected item; display the object window (View Object) for the selected item,
an existing workbook or user form; and hide or show the object folders while
still showing the individual items contained within them (Toggle Folders).


Properties
Window

The Properties Window lists the properties for the object that is currently
selected in the Project Explorer or in the work area (in the case of a form)
and displays its current settings.


Work Area The work area is the larger area to the right of the Project Explorer and

Properties Window. It is in this area where the text editor is used to create
VBA code in a module (a window that is designed to hold programming
code) and where user forms are built. (A UserForm is a window or dialog box
that makes up part of an application’s user interface.)


Pane Area The Pane Area is used to display additional mini-windows or panes that can

assist in the development and debugging of programs. The example above
shows the Immediate pane.

2

3

4

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 6 Chapter 1 - Understanding Excel VBA

OPENING AND CLOSING THE EDITOR

The Visual Basic Editor is a separate
application that can be accessed from any
Microsoft Office application. When you are
programming you can keep the Editor open and

switch between the Editor and the workbook as
required. Alternatively, you can close the Editor and
return to the workbook, then re-open the Editor
when you need it.

Try This Yourself:

O
p

e
n

 F
il

e
 Before starting this

exercise you MUST
open the file VBE1301
Understanding Excel
VBA_1.xlsm...


If the macro security
warning appears while
opening the file click on
[Enable Content]

Your workbook should
now be open…


Click on the
DEVELOPER tab, then
click on Visual Basic in
the Code group to open
the VBA Editor

The Editor will open in its
own window…


Select File > Close and
Return to Microsoft
Excel

The Editor will close and
you will return to the
Excel workbook…


Press + to

reopen the Editor
window


Press + to close

the Editor window

1

2

For Your Reference…

To open the VBA Editor:

 On the DEVELOPER tab, click on Visual
Basic in the Code group, or

 Press +

To close the VBA Editor:

 Select File > Close and Return to
Microsoft Excel

Handy to Know…

 + acts as a toggle between the

Editor and the workbook. When you use

+ to swap back to the workbook, it keeps

the Editor open rather than closing it.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 7 Chapter 1 - Understanding Excel VBA

UNDERSTANDING OBJECTS

In VBA, an object is anything in an application
that you can manipulate in some way. For
example, your code may open a workbook,
rename a worksheet, select a cell or range,

maximise a window, set a specific application
option, and so on. Each of these items – workbook,
worksheet, cell, range, window and application – is
an object.

Object Collections

As you know, you can have several Excel workbooks open at any time. Each of these workbooks is a
separate object that belongs to a collection. A collection is simply a set of similar objects. For
example, Excel’s Workbooks collection is the set of all open Workbook objects. Because collections
are objects themselves, they have their own properties and methods that you can use to manipulate
one or more objects in the collection.

The members of a collection are called elements. You can refer to an individual element by the object’s
name or its index value (the index is the number that Excel lists beside the filename in Switch
Windows in the VIEW tab). For example, you can programmatically close a workbook named Monthly
Sales.xlsx using the following two commands (assuming that Monthly Sales.xlsx is the first workbook
opened in the current Excel session):

Workbooks(“Monthly Sales.xlsx”).Close or
Workbooks(1).Close

Notice how the object (Workbooks) and the method (Close) are delimited by a full stop (.).

If you don’t specify an element – such as (“Monthly Sales.xlsx”) or (1) – VBA assumes you are
working with the entire collection.

Object Properties

Every object has a defining set of characteristics. These characteristics are called the object’s
properties and they control the appearance and position of the object. For example, the ActiveCell
object has a Value property that you can use to get or set the contents of the cell.

When you refer to a property you use the syntax Object.Property. For example:

ActiveCell.Value

Properties appear in a listing with a property icon .

Object Methods

An object’s method describes what you can do with the object. For example, you can save (method)
the active workbook (object).

When you refer to a method you use the syntax Object.Method. For example:

ActiveWorkbook.Save

Some methods have arguments. In this case you use the syntax Object.Method argument1,
argument2, ...

Workbooks.Open “D:\Sales Data\Monthly Sales.xlsx”

The above statement will open the workbook called Monthly Sales.xlsx. This statement has included
only one of the available arguments – the filename and path. Sometimes arguments are compulsory.
For example, VBA needs to know what file to open so failing to provide a filename here will crash the
program. Sometimes arguments are optional such as whether to open the file as Read Only.

The names of the valid arguments, plus the constants that can be used with them, are listed in the

Help system for each particular method. Methods appear in a listing with the method icon .

Object Events

An event is something that happens to an object. The opening of a workbook in Excel is an example of
an event. Although Excel has an Open method that you can use to open a workbook, this method only
initiates the procedure; the actual process of the file being opened is the event.

For example, you may write a procedure (which is called an event handler) that will display a message
box each time a specific workbook is opened.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 8 Chapter 1 - Understanding Excel VBA

VIEWING THE EXCEL OBJECT MODEL

The object model for Excel is a very extensive
hierarchy of objects and collections. In previous
versions of Excel you could readily find a pictorial
representation of the entire model; however, in

Excel 2013 you can only view pictorial
representations of the individual objects of the
model. Nevertheless, this is still a great way of
finding the methods and properties of an object.

Try This Yourself:

Before starting this
exercise ensure that your
computer is connected to
the internet...


Open a new blank
workbook, then open the
Editor


In the Editor, select Help
> Microsoft Visual Basic
for Applications Help to
open a new browser
window


Click on Excel 2013
developer reference in
the left pane


Click on Object model in
the left pane to display
the list of objects in the
model


Scroll to and click on
Workbooks Object


Click on Workbooks
Members, then examine
the list of methods and
properties shown to the
right


Scroll down to
Properties, then click on
Count to read about the
Count property


Close the browser tab

2

3

7

For Your Reference…

To access the Excel object model:

1. Select Help > Microsoft Visual Basic for
Applications Help

2. Click on Excel 2013 developer reference

3. Click on Object model

Handy to Know…

 It is more important to know how to find the
object model than it is to memorise the entire
structure. Understanding how these objects,
methods and properties work together will
come with time and experience.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 9 Chapter 1 - Understanding Excel VBA

USING THE IMMEDIATE WINDOW

The Editor has an Immediate Window that lets
you type instructions and test expressions. It runs
statements immediately as if they were run from
a procedure. You can also precede variables and

expressions with a question mark to perform what
is operations. For example, ?Workbooks.Count
asks “How many workbooks are open?”.

Try This Yourself:

Before starting this exercise
ensure that a new, blank
workbook is open and that the
VBA Editor is displayed...


Select View > Immediate
Window to display the
Immediate Window as a pane
at the bottom of the Editor


Type Workbooks.Add, then

press to create a new

workbook


Click on Workbooks.Add, then
press to create another

workbook

You can see the workbooks that
are open in the Project
Explorer…


Repeat step 3 three more times
to build up a collection of open
workbooks


Click under the last command,
type Workbooks.Open
"C:\Course Files for Microsoft
Excel 2013 VBA\Test_1.xlsx",
then press to open the

workbook called Test_1.xlsx


Repeat step 5 for Test_2.xlsx


Type ?Workbooks.Count and

press to display the number

of workbooks that are open

Leave the workbooks and the
VBA Editor open for the next
exercise

1

2

3 4

5

7

For Your Reference…

To display the Immediate Window:

 Click on View, then select Immediate
Window

To use the Immediate Window:

1. Type a command in the window

2. Press

Handy to Know…

 Computer programming requires a much
higher degree of accuracy than you may be
used to. For example, if you have typed the
file and file path details incorrectly or if the
files are in a different location on your
computer, the programming instructions you
type will result in an error message.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 10 Chapter 1 - Understanding Excel VBA

WORKING WITH OBJECT COLLECTIONS

In VBA some objects belong to collections. The
Workbooks collection is the set of all the
workbook objects currently open in the
application. Each item in a collection is known

as an element and must be referenced as part of
the collection, either by name or by its position in
the collection (known as the index), where 1 is the
first workbook you opened, 2 is the second, etc.

Try This Yourself:

 Continue using the previous files
with this exercise...


Ensure the cursor is positioned
on a blank line in the Immediate
Window, type
?Workbooks.Item(1).Name,

then press to return the

name of the first workbook you
added


Type
Workbooks.Item(1).Activate,

then press to make this the

active workbook


Type Workbooks.Item
("Test_1.xlsx").Activate, then

press to make this

workbook active


Type ?Workbooks.Item
("Test_1.xlsx").Saved, then
press to see whether the file

has been saved – True – or
False if it hasn’t been saved


Type Workbooks.Item
("Test_1.xlsx").Close, then

press to close the workbook

– if the file hasn’t been saved
you will be prompted to do so


If prompted, click on [Don’t
Save]


Type Workbooks.Close, then

press to close all workbooks

– don’t save if prompted

Leave the Editor open for the
next exercise

1

4

5

For Your Reference…

To work with collections use the structures:

CollectionName.Item(index or name).Method

CollectionName.Item(index or name).Property =
value

7

When all of the workbooks
are closed, Project
Explorer is empty

Handy to Know…

 You can find out information about the
currently active workbook by using the object
ActiveWorkbook. For example,
?ActiveWorkbook.Name will display the
name of the active workbook.

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 11 Chapter 1 - Understanding Excel VBA

SETTING PROPERTY VALUES

Properties affect the way an object looks or
behaves. The properties for objects can be listed
by typing the name of the object followed by a
full stop. VBA includes a built-in list system

(known as IntelliSense) that will list methods,
properties and values as you type your command.
Property values are set by specifying the object,
the property, an equal sign and the new value.

Try This Yourself:

Before starting this exercise
ensure your cursor is positioned
in the Immediate Window in the
VBA Editor…


Type Workbooks.Add, then

press to add a workbook

(and make it active)


Type ActiveWorkbook.Close,

then press

Notice how a list of methods and
properties appears when you
press the full stop or get to the
end of a method or property…


Type Workbooks.Add, then

press


Type ActiveWorkbook.Saved =

IntelliSense will list the possible
values for the Saved property.
Let’s use the logical value False
to force Excel to display a
prompt to save the currently
unsaved workbook when it is
closed…


Type False, then press


Type ActiveWorkbook.Close,

then press

You will be prompted to save
the workbook…


Click on [Don’t Save]

Leave the Editor open for the
next exercise

2

4

For Your Reference…

To set a property value use the structure:

Object.Property = Value

Handy to Know…

 It can take some time to get used to working
with properties. Some properties can only be
read, while others can be changed. When
you change a property you are said to be
setting its value. When you read a property

you are said to be getting its value.

6

5

Sam
ple

Programming in VBA - Using Microsoft Excel 2013

© Watsonia Publishing Page 12 Chapter 1 - Understanding Excel VBA

WORKING WITH WORKSHEETS

Worksheets is a collection of worksheet
objects. It refers to all of the worksheets in the
active workbook. You can insert, modify and
delete worksheets using properties and methods,

but you can only manipulate worksheets if you
have a workbook open. The following example
demonstrates some of the techniques that you can
use with the Worksheets collection.

Try This Yourself:

Before starting this exercise
ensure all workbooks are closed
and your cursor is positioned in
the Immediate Window in the VBA
Editor…


Type Worksheets.Add, then

press

An error message will appear –
there is no workbook open in
which to insert a worksheet…


Click on [OK]


Type the following commands,
pressing after each:

 Workbooks.Add

 Worksheets.Add

 ?Worksheets.Count

The number of worksheets in the
workbook will be returned…


Type ?ActiveSheet.Name, then

press to display the name of

the active worksheet


Type ActiveSheet.Name =
"Budget Data", then press

to name the active worksheet


Type Worksheets.Item(2).Delete,

then press

A warning will appear notifying
you that you may lose data…


Click on [Delete]

Leave the workbook and the VBA
Editor open for the next exercise

1

3

4

For Your Reference…

To work with Worksheets use the structure:

Worksheets.Item(Index or “Name”).method

Worksheets.Item(Index or “Name”).property =
value

Handy to Know…

 Cryptic error messages are common
occurrences in VBA, both for beginners and
for experienced programmers.

6

5 Sam
ple

