снapter 1 FORMULA TECHNIQUES

InFocus
WPL_E818

Most people are familiar with simple formulas such as =B2+B3 and simple functions such as SUM, but there is so much more that you can do with formulas and functions. Most functions require parameters - extra bits of information - to perform their task. You can actually use other functions or formulas as the parameters for a function - effectively nesting functions within functions.

In this session you will:

\checkmark gain an understanding of how to scope a formula
\checkmark gain an understanding of how to develop a nested function
\checkmark learn how to create a nested function
\checkmark learn how to edit a nested function
\checkmark learn how to copy nested functions
\checkmark learn how to use concatenation to join text and values
\checkmark learn how to switch to manual recalculation
\checkmark learn how to force a recalculation
\checkmark learn how to paste values from formulas.

Scoping A Formula

A nested function is a function within a function, and they can be quite tricky to read and build unless you plan ahead. Scoping refers to the process of defining the problem or calculation so
that you can identify the different parts of the formula you need to create. The order in which these parts need to be calculated determines where each part is nested in the formula.

Scoping \& Building Steps

Formulas that use nested functions are best built in several stages and should be thoroughly tested at each stage to ensure that they achieve the correct result. The steps are:

1. determine what the overall formula will calculate
2. break down the formula into its component parts
3. create the base function and ensure that it works
4. add the additional functions and elements of the formula one by one, testing each one as it is added to the overall formula.

Nesting Functions Workshop Example

The objective of the workshop example is to create a formula that calculates a dividend payable to ten superannuation investors. The spreadsheet includes the following information:

4	A	B	C	D	E	F	G	H
1	The Alpheius Super Fund							
2				Investment	Risk (A)	Growth (B)	Cons'tive (C)	
3	Bonus Date	30/06/1998		\$1,000	3\%	2\%	1\%	
4				\$5,000	4\%	3\%	1\%	
5				\$10,000	5\%	4\%	2\%	
6				\$15,000	6\%	5\%	2\%	
7				\$20,000	7\%	6\%	4\%	
8				\$25,000	8\%	8\%	5\%	
9								
10	,							
11	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend	
12	Pedro	Kavana	Mr	15/05/1999	\$10,000	C		
13	Jessica	Dunn	Miss	12/04/1998	\$12,000	A		
14	Tim	Nyguen	Mr	13/05/1998	\$3,000	A		
15	Fabian	Considine	Mr	12/01/1998	\$12,500	C		

The dividend is calculated by applying a percentage to the original investment. The percentage is taken from a sliding scale and is determined by:

- the amount of the investment
- the investment scale that the investor chose
- the date of initial investment: as an incentive, a 5% bonus was offered to investors who signed up on or before June 30, 1998.
The base function in the formula will be a VLOOKUP function, which is written as follows:

VLOOKUP(lookup value, lookup table, return value)

The lookup value is the amount of the investment. The lookup table is the dividend table. The return value is the percentage that will be applied to the investment amount to calculate the dividend.
The return value, however, causes a problem as it depends upon the scale chosen by the investor. This problem is overcome by using an IF function to ascertain which scale was chosen and to use this information to select the appropriate value from the table.
Another IF function can be used to test whether the investor signed up within the bonus period and to apply the appropriate bonus amount.

Developing A Nested Function

The best way to develop a complex formula is by developing each of the components first and then combining them. By writing each of the parts in sentence form, you will be able to understand
the logic of each more easily. You can then establish where the individual parts go in the overall scheme of your formula, create a base function, and then build your formula from there

Developing the Workshop Example

The overall formula for the workshop example can be stated as:
=Investment Amount * (Dividend Percentage + Bonus)

The Dividend Percentage

The logic of the Dividend Percentage calculation can be stated as:
Look up the investment amount in the dividend table
If the investor chose scale A, then return the percentage from column 2 in the table
If the investor chose scale B, then return the percentage from column 3
Otherwise, return the percentage from column 4

The base function used to calculate the Dividend Percentage can be written as:
VLOOKUP(investment amount, dividend table, return column)

The Investment Scale

We then need to add IF functions within the VLOOKUP to allow for the three scales. If there were only two scales, the IF function could be written as:

IF(scale chosen $=A$, return column 2, otherwise return column 3)
Because there are three scales, we need to add the second IF function to provide the extra choice. The final IF functions can be written as:
$I F($ scale chosen $=A$, return column 2, IF(scale chosen $=B$, return column 3, return column 4))

The Bonus

Finally, we need to determine whether or not to pay the Bonus. The logic of the Bonus calculation can be stated as:

If the joining date is earlier than the bonus date, then add 5\%, otherwise add nothing
This can also be done using an IF function, written as:
IF(the joining date is earlier than the bonus date, pay 5\%, otherwise don't pay anything)

Now all we need to do is translate these into Excel terminology and add cell references. We will start by creating the base function, so that it can be tested, and then we will add the additional parts of the formula.

Creating Nested Functions

A nested function is created by placing a function as a parameter within another function. When you create nested functions the placement of brackets is especially important and should be
checked carefully. Excel helps you with this task by using different colours for matched pairs of brackets. You can also improve the readability of the formula by placing the parts on separate lines.

Try This Yourself:

む
0
0
Before starting this exercise you MUST open the file E818 Formula Techniques_1.xlsx...

1 Click in cell G12
(2) Type
=VLOOKUP(E12,\$D\$3:\$G\$8,
3
Press Alt + Enter to create a new line - splitting the parts of the formula up makes it easier to read

4 Type IF(F12="A",2,
5 Press Alt + Enter to create a new line

6 Type IF(F12="B",3,
The final part of the formula is the 'false' part of the last IF statement...
(7)

Type 4)))
8 Press Enter to complete the formula

The value 0.02 should appear - the rate taken from G5 which is the \$10,000 investment at Scale C...

9
Click in cell F12, type A then press Enter to see the dividend rate for scale \boldsymbol{A}

3

Scale	Dividend				
C	VLOOKUP(E12,\$D\$3:\$G\$8,				
A					
A	VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])				
C					
C					

(4)

(7)

pined	Investment	Scale	Dividend		
/1999	\$10,000	A	=VLOOKUP(E	2,\$D\$3:\$G\$8,	
/1998	\$12,000	A	IF(F12="A",2,		
/1998	\$3,000	A	1F(F12="B",3,		
/1998	\$12,500	C			
/1998	\$4,500	C			

8

Joined	Investment	Scale	Dividend			
$15 / 05 / 1999$	$\$ 10,000$	C		$\mathbf{0 . 0 2}$		
$12 / 04 / 1998$	$\$ 12,000$	A				
$13 / 05 / 1998$	$\$ 3,000$	A				
$12 / 01 / 1998$	$\$ 12,500$	C				
$13 / 02 / 1998$	$\$ 4,500$	C				

(9)

Joined	Investment	Scale	Dividend			
$15 / 05 / 1999$	$\$ 10,000$	A		$\mathbf{0 . 0 5}$		
$12 / 04 / 1998$	$\$ 12,000$	A				
$13 / 05 / 1998$	$\$ 3,000$	A				
$12 / 01 / 1998$	$\$ 12,500$	C				
$13 / 02 / 1998$	$\$ 4,500$	C				

For Your Reference...

To create a nested function:

1. Type the function as required
2. Use Alt + Enter to create new lines
3. Check the placement of brackets carefully

Handy to Know...

- Excel uses colour in formulas to indicate cell references. When you edit an existing formula, the cells referred to will appear outlined in a specific colour, and the corresponding cell references in the formula will appear in matching colours.

Editing Nested Functions

Once the base function has been created and tested, the additional parts of the nested function can be added by editing the formula. Nested functions are edited the same way as any other

Excel formula. When you click on the cell, the formula is displayed in the formula bar and can then be modified. Excel also uses coloured references to help you understand the formula.

Try This Yourself:

Continue using the previous file

> た with this exercise, or open the file
> E818 Formula

Techniques_2.xlsx...
(1)

Click on $\mathbf{G 1 2}$ to select it
2 Click immediately after the first equal sign in the Formula bar
This places the formula in edit mode and displays matched coloured references. For example, $\$ D \$ 3: \$ G \$ 8$ appears in green in the formula and is outlined in green on the worksheet..
3
Type 12 (
This ensures that the investment amount will be multiplied by the Dividend percentage...

4
Click on \checkmark at the right end of the Formula bar to expand it, then click at the end of the formula and press Alt + Enter
5) On the new line, type +IF(D12<=\$B\$3,5\%,0))
This adds the bonus percentage if the start date is earlier than the bonus date...

6
Press Enter to complete the formula then click on \wedge to restore the formula bar to one line

2

4

5

6

Lastname	Title	Joined	Investment	Scale	Dividend	
Kavana	Mr	$15 / 05 / 1999$	$\$ 10,000$	A		$\$ 500$
Dunn	Miss	$12 / 04 / 1998$	$\$ 12,000$	A		
Nyguen	Mr	$13 / 05 / 1998$	$\$ 3,000$	A		
Considine	Mr	$12 / 01 / 1998$	$\$ 12,500$	C		
Jovanovski	Ms	$13 / 02 / 1998$	$\$ 4,500$	C		

For Your Reference...

To edit a nested function:

1. Click on the cell to select it
2. Click in the formula in the Formula bar and edit as required
3. Press Enter to complete the changes

Handy to Know...

- When you have finished editing a formula, you can click on the Enter button \checkmark to enter the formula. If you make a mistake, you can click on the Cancel button x or press Esc to exit from Edit mode.

Copying Nested Functions

You can copy formulas with nested functions the same way that you copy any formula. However, you should be especially careful of the cell addresses. Relative cell addresses will adjust
automatically when you copy files, while absolute addresses will remain unchanged. These can be difficult to identify in a complex formula, so it is wise to check the results thoroughly after copying.

Try This Yourself:

Continue using the previous file
Ẽ with this exercise, or open the
๗゙ © file E818 Formula
Techniques_3.xlsx...
1
Click on G12 then click on
Expand Formula Bar \vee and examine the formula

The only absolute references are $\$ D \$ 3: \$ G \$ 8$, and the Bonus date $\$ B \$ 3$. The rest are relative which will adjust as you copy the formula. These include the date joined, investment amount and scale...

2
Click on Collapse Formula Bar
^ to return it to one line
(3)

Move the mouse pointer to the fill handle at the bottom right corner of G12 then double-click to copy the formula down the column

This technique for copying works as long as you have a continuous list on the left of the original cell...
(4)

Click on G22 then double-click on the AutoSum tool Σ to calculate the total of the dividends

AutoSum will create a Sum function for the cells immediately above it

	G12	-	f_{x}	$\begin{aligned} & =E 12 *(V L O O K U P(E 12, \$ D \$ 3: \$ \mathrm{G} \$ 8, \\ & \text { IF(F12="A",2, } \\ & \text { IF(F12="B",3,4))) } \\ & \text { +IF(D12<=\$B\$3,5\%,0)) } \end{aligned}$			
4	A	B	C	D	E	F	G
1	The Alpheius Super Fund						
2				Investment	Risk (A)	Growth (B)	Cons'tive (C)
3	Bonus Date	30/06/1998		\$1,000	3\%	2\%	1\%
4				\$5,000	4\%	3\%	1\%
5				\$10,000	5\%	4\%	2\%
6				\$15,000	6\%	5\%	2\%
7				\$20,000	7\%	6\%	4\%
8				\$25,000	8\%	8\%	5\%
9		,					
10							
11	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend
12	Pedro	Kavana	Mr	15/05/1999	\$10,000	A	\$500
13	Jessica	Dunn	Miss	12/04/1998	\$12,000	A	
14	Tim	Nyguen	Mr	13/05/1998	\$3,000	A	

(1)
(3)

-	-			
Joined	Investment	Scale	Dividend	
15/05/1999	\$10,000	A	\$500	
12/04/1998	\$12,000	A	\$1,200	
13/05/1998	\$3,000	A	\$240	
12/01/1998	\$12,500	C	\$875	
13/02/1998	\$4,500	C	\$270	
14/03/1999	\$2,300	B	\$46	
12/03/1999	\$1,200	A	\$36	
1/03/1998	\$2,300	B	\$161	
23/02/1998	\$15,000	C	\$1,050	
21/01/1999	\$23,000	C	\$920	
				[${ }_{+}$

4

$14 / 03 / 1999$	$\$ 2,300$	B	$\$ 46$	
$12 / 03 / 1999$	$\$ 1,200$	A	$\$ 36$	
$1 / 03 / 1998$	$\$ 2,300$	B	$\$ 161$	
$23 / 02 / 1998$	$\$ 15,000$	C	$\$ 1,050$	
$21 / 01 / 1999$	$\$ 23,000$	C	$\$ 920$	
			$\$ 5,298$	

For Your Reference...

To copy a nested function:

1. Check the cell references
2. Copy the formula using your preferred copying technique

Handy to Know...

- When you double-click on a formula, it will place it in Edit mode. Cells referred to in the formula will appear with coloured outlines. If you want the formula to use exactly the same cells as those outlined, no matter where the formula is copied to, the cell references must be absolute.

Using Concatenation

Concatenation is the process of joining text and/or values together. This can be used to form a phrase or expression from existing data in the worksheet. The main character used for
concatenation is the ampersand \&. All text must be enclosed in quotation marks. The TEXT() function can be used to convert dates and values into text so that they can be included in the result too.

Try This Yourself:

Continue using the previous file with this exercise, or open the
file E818 Formula
Techniques_4.xIsx...
Click on H11 and type Report, then press Enter

2
In cell H12, type the following, using Alt + Enter to create new lines, and including the spaces before and after the words
=C12 \& " " \& B12 \& " joined the fund on " \&
Complete the rest of the function as shown
(4)

Press Enter to create the formula
5 Copy the formula to the range H13:H21 and then click elsewhere, to deselect it A report has been created for every investor

2

(3)

Dividend Report

$\$ 500 \mathrm{Mr}$ Kavana joined the fund on $15 / 05 / 1999$ with an investment of $\$ 10,000$. The dividend is now $\$ 500$. $\$ 1,200$ Miss Dunn joined the fund on $12 / 04 / 1998$ with an investment of $\$ 12,000$. The dividend is now $\$ 1,200$. $\$ 240 \mathrm{Mr}$ Nyguen joined the fund on $13 / 05 / 1998$ with an investment of $\$ 3,000$. The dividend is now $\$ 240$. $\$ 875 \mathrm{Mr}$ Considine joined the fund on $12 / 01 / 1998$ with an investment of $\$ 12,500$. The dividend is now $\$ 875$. $\$ 270$ Ms Jovanovski joined the fund on $13 / 02 / 1998$ with an investment of $\$ 4,500$. The dividend is now $\$ 270$. $\$ 46 \mathrm{Ms}$ Beaumont joined the fund on $14 / 03 / 1999$ with an investment of $\$ 2,300$. The dividend is now $\$ 46$. $\$ 36$ Mr Underwood joined the fund on 12/03/1999 with an investment of $\$ 1,200$. The dividend is now $\$ 36$. $\$ 161 \mathrm{Ms}$ Schenk joined the fund on 01/03/1998 with an investment of $\$ 2,300$. The dividend is now $\$ 161$. $\$ 1,050$ Miss Perera joined the fund on $23 / 02 / 1998$ with an investment of $\$ 15,000$. The dividend is now $\$ 1,050$. $\$ 920 \mathrm{Ms}$ Rasheed joined the fund on $21 / 01 / 1999$ with an investment of $\$ 23,000$. The dividend is now $\$ 920$.
5
$\$ 5,298$

For Your Reference...

To concatenate text and values:

1. Use ampersand ($\&$) to add items
2. Enclose actual text in quotation marks, including spaces
3. Convert dates and values using TEXT()

Handy to Know...

- You could use the report created by the concatenation in a mail merge using Microsoft Word to produce individual report letters for each client.

Switching To Manual Recalculation

Recalculation refers to processing the formulas in a spreadsheet to calculate new results.
Formulas are usually recalculated each time a value in a dependent cell changes, but you can
turn off automatic recalculation and instead set Excel to manual. This means that no formulas will be recalculated unless you specifically request Excel to perform the calculations.

Try This Yourself:

Continue using the previous
Ẽ file with this exercise, or open
©゚ iv the file E818 Formula
Techniques_5.xlsx...
1
Click on F13 and type B then press Enter

The dividend and total will update to reflect the change...
2
Click on the Formulas tab in the Ribbon and click on the Calculation Options tool 葍 to display the menu
You can see that it's set to Automatic...
(3) Select Manual, then click in F16
(4)

Type A and press Enter You'll notice that nothing changes, even though scale A gives a different percentage and should result in a higher dividend

1

Joined	Investment	Scale	Dividend	Report	
15/05/1999	$\$ 10,000$	A	$\$ 500$	Mr Kavana joined the fur	
$12 / 04 / 1998$	$\$ 12,000$	B	$\$ 1,080$	Miss Dunn joined the fur	
$13 / 05 / 1998$	$\$ 3,000$	A	$\$ 240$	Mr Nyguen joined the fu	
$12 / 01 / 1998$	$\$ 12,500$	C	$\$ 875$	Mr Considine joined the	
$13 / 02 / 1998$	$\$ 4,500$	C	$\$ 270$	Ms Jovanovski joined the	
$14 / 03 / 1999$	$\$ 2,300$	B	$\$ 46$	Ms Beaumont joined the	
$12 / 03 / 1999$	$\$ 1,200$	A	$\$ 36$	Mr Underwood joined th	
$1 / 03 / 1998$	$\$ 2,300$	B	$\$ 161$	Ms Schenk joined the fur	
$23 / 02 / 1998$	$\$ 15,000$	C	$\$ 1,050$	Miss Perera joined the fu	
$21 / 01 / 1999$	$\$ 23,000$	C	$\$ 920$	Ms Rasheed joined the fi	
			$\$ 5,178$		

2

4

For Your Reference...

To switch to manual recalculation:

1. Click on the Formulas tab
2. Click on Calculation Options
3. Select Manual

Handy to Know...

- The Calculation settings are global and will affect every spreadsheet you work with. You can't force only one workbook to require manual recalculation without affecting others (unless you've done some fancy programming, but that's another story).

Forcing A Recalculation

If you turn off manual recalculation, you will need to force recalculation at some stage to update the formulas. There are several options to choose from for recalculation. You can
recalculate any changed formulas in the current worksheet or all open workbooks, recalculate all formulas in all workbooks irrespective of changes, or check all formulas before recalculating.

Try This Yourself:

Open
File
Before starting this exercise you MUST open the file E818 Formula Techniques_6.xlsx...

1
Click on F20 and examine the scale, dividend and total amounts
(2) Type \mathbf{A} and press Enter

Nothing happens...
3 On the Formulas tab, click on Calculate Now

The formulas will be recalculated and the results will be updated...

4
Click on Calculation Options and select Automatic

Now recalculation will happen automatically when values are changed

1

2

Joined	Investment	Scale	Dividend	Report	
15/05/1999	\$10,000	A	\$500	Mr Kavana joined the fur	
12/04/1998	\$12,000	B	\$1,080	Miss Dunn joined the fur	
13/05/1998	\$3,000	A	\$240	Mr Nyguen joined the fu	
12/01/1998	\$12,500	C	\$875	Mr Considine joined the	
13/02/1998	\$4,500	A	\$360	Ms Jovanovski joined the	
14/03/1999	\$2,300	B	\$46	Ms Beaumont joined the	
12/03/1999	\$1,200	A	\$36	Mr Underwood joined th	
1/03/1998	\$2,300	B	\$161	Ms Schenk joined the fur	
23/02/1998	\$15,000	A	\$1,050	Miss Perera joined the fi	
21/01/1999	\$23,000	C	\$920	Ms Rasheed joined the fi	
			\$5,268		

3

For Your Reference...

To force a recalculation:

1. Click on the Formulas tab
2. Click on Calculate Now ${ }^{[}$

Handy to Know...

- To recalculate the current worksheet, click on Calculate Sheet on the Formulas tab or press Shift + F9. To recalcuate all workbooks irrespective of changes, press ctrl $+\mathrm{Alt}+$ F9. To check the formulas as well as recalculate, press $\mathrm{Ctrl}+\mathrm{Shift}^{+\mathrm{Alt}}+\mathrm{Fs}^{\text {. }}$.

Pasting Values From Formulas

Sometimes it's useful to be able to grab the results of a calculation and use the value elsewhere in a spreadsheet without keeping the formula. For example, you may want to keep a
copy of some data at a certain point in time, knowing that it won't change at a later date. You can do this by copying formulas and pasting only the values.

Try This Yourself:

Continue using the previous
$\stackrel{2}{\text { E. }}$
file with this exercise, or open
the file E818 Formula Techniques_7.xlsx...

1
Select the range $\mathbf{B 1 2 : B 2 1}$ then hold down ctrl and select G12:G21

The first part of the range contains text and the second contains formulas...

2
Click on the Home tab on the Ribbon and click on Copy
3 Click on B24, then click on the drop arrow for Paste [and click on Values ${ }^{123}$
(4) Press Esc to hide the copy marquees, then click on C24 and check the entry in the Formula bar
You'll see that only the value 500 has been pasted - the formula isn't retained

1

(3)

4

For Your Reference...

To paste values from formulas:

1. Click on the formula
2. Click on Copy
3. Click in the destination cell
4. Click on the drop arrow for Paste and click on Values ${ }^{123}$

Handy to Know...

- When you copy formulas, you have the option to paste formulas, values and links. A link is a reference to the cell containing the formula. For example, if the cell containing the copied formula is G12, the link created by pasting will be $=\$ \mathrm{G} \$ 12$.

chapter 2 LOGICAL FUNCTIONS

InFocus
WPL_E819

Logical functions are used in spreadsheets to test whether a situation is true or false. Depending on the result of that test, you can then elect to do one thing or another.
These decisions can be used to display information, perform different calculations, or to perform further tests.

In this session you will:
\checkmark gain an understanding of logical functions
\checkmark learn how to display text using the IF function
\checkmark learn how to use IF to calculate values
\checkmark learn how to nest IF functions
\checkmark learn how to use IFERROR
\checkmark learn how to use TRUE and FALSE
\checkmark learn how to use the AND function
\checkmark learn how to use the OR function
\checkmark learn how to use the NOT function.

Understanding Logical Functions

Logical functions provide decision-making tools for information in a spreadsheet. They allow you to look at the contents of a cell, or to perform a calculation, and then test that result against a
required figure or value. You can then use the IF logical function to determine which calculation to perform or action to take depending on the outcome of the test. Here are some examples.

(1) The IF Function

The IF function is the key logical function used for decision making. It takes the format:

```
=IF(condition, true, false)
```

For example, you could use the following formula:

```
=IF(B2 > 400, "High", "Low") where,
```

B2 >400 is the condition being tested
(this could be translated as "Is the value in cell B2 greater than 400?")
"High" is the text to display if B2 is greater than 400 (the result of the test is yes or TRUE)
"Low" is the text to display if B2 is less than or equal to 400 (the result of the test is no or FALSE)

2 The AND Function

The AND function is used to compare more than one condition. It returns TRUE only if all of the conditions are met, and takes the format:

=AND(condition1, condition2,...)

For example, you could use the following formula:

$$
\begin{aligned}
& =A N D(B 2>400, C 2<300) \quad \text { where, } \\
& \text { B2 }>400 \text { is the first condition being tested } \\
& \mathrm{C} 2<300 \text { is the second condition being tested }
\end{aligned}
$$

This will only return the result TRUE if the value in cell B2 is greater than 400 and the value in cell C 2 is less than 300. In all other situations, the result will be FALSE.

3 The OR Function

The $\boldsymbol{O R}$ function is also used to compare more than one condition. It returns TRUE if any of the conditions are met, and takes the format:
$=O R($ condition1, condition $2, \ldots$)
For example, you could use the following formula:
$=O R(B 2>400, C 2<300) \quad$ where,
$\mathrm{B} 2>400$ is the first condition being tested
$\mathrm{C} 2<300$ is the second condition being tested
This will return the result TRUE if either the value in cell B 2 is greater than 400 or the value in cell C 2 is less than 300 . The result will be FALSE only if neither of the conditions is met.

